

Overview of Centrica Storage

Analyst site visit 26th October 2006

centrica

Agenda

- Introduction to Centrica Storage
- Achievements since Centrica acquisition
- Rough's place in the storage and wider gas market
- Value of storage
- Financial drivers
- Opportunities
- Wrap up

An introduction to Centrica Storage

- Centrica Storage Limited is a wholly owned subsidiary of Centrica plc
- Centrica Storage is a ring-fenced part of Centrica plc, separated from the supply side legally, physically and financially (Chinese walls). Undertakings agreed with Secretary of State December 2003 governing operation of Rough

A brief history of Rough

- October 1975 Rough field, 18 miles off East Yorkshire coast originally developed to produce natural gas
- 1983/1984 Rough field converted to a storage facility
- 1st October 1997 BG Storage established as a standalone business (ringfenced for competition reasons) following split of British Gas plc
- 16th July 2001 BG sell Rough storage to Dynegy
- 14th November 2002 Centrica acquires Rough gas storage assets from Dynegy for £304m
- 1st December 2003 Following a Competition Commission inquiry into the acquisition, Centrica provided Ofgem and DTI with a list of Undertakings on the operation of Rough. 'Separated' Centrica Storage business unit established

Facilities overview

Hedon, near Hull Administration/engineering

Installed 1983
24 wells
24/7 Operation

47/3B

York
ROUGH
29 km @ 36"
29 km @ 16"

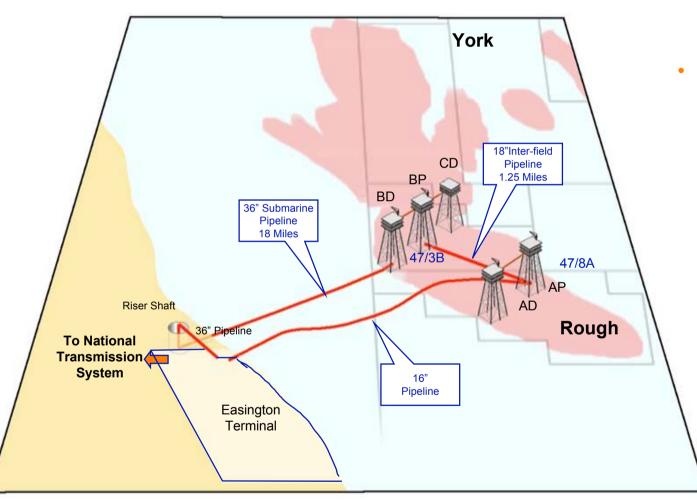
AMETHYST

TERMINAL

10 20 km

47/8AInstalled 1977
6 wells
24/7 Operation

Easington Terminal


Rough gas processing
Amethyst gas processing
Tie in to National Transmission System
24/7 Operation

Venture House, Staines
Headquarters and
Commercial
office
24/7 Operation

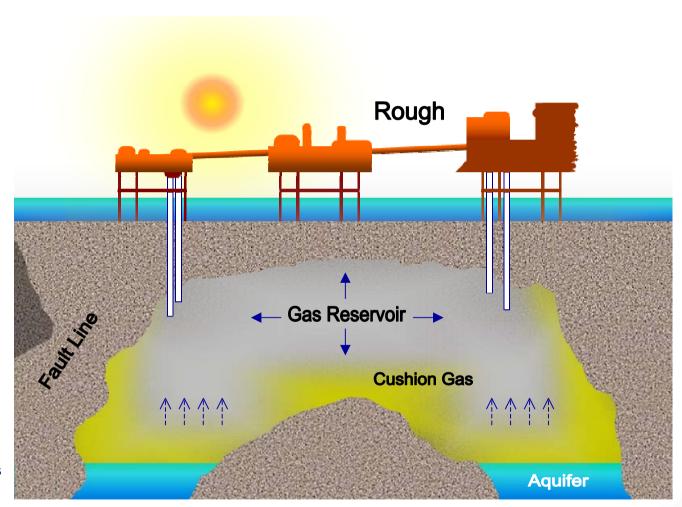
Centrica Storage assets

- Represents over 70% of UK storage and supplies 10% of UK peak winter demand
- Largest offshore gas storage facility in Western Europe (strategically important).
 - 185 billion cubic feet (bcf) cushion gas
 - ~118 bcf storage capacity
 - Deliverability max 44.8mcm/day
 - Average Injection ~15mcm/day
 - Onshore processing terminal at Easington for Rough, Amethyst, Rose and Helvellyn processing (third party gas).

An exceptionally good storage reservoir

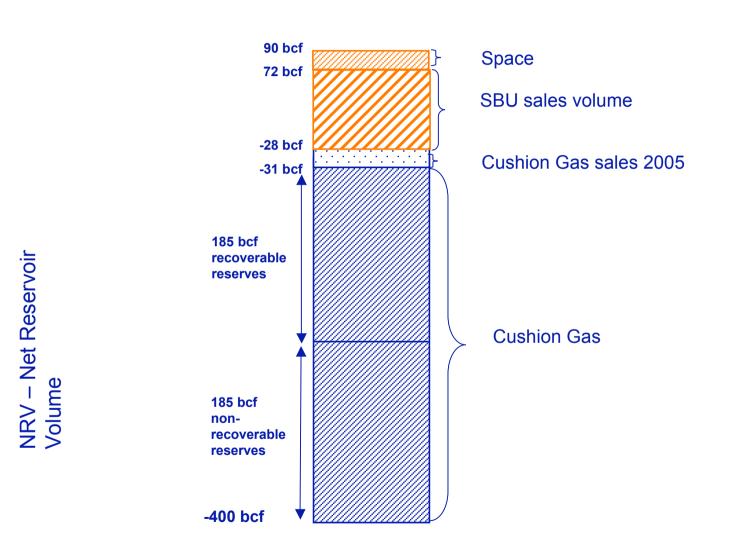
Reservoir Characteristics

Size and wells


- Approx 10 x 3 km, 9,000 ft deep
- Thickness from 80 to 117 ft
- 30 wells in place

Homogeneous high quality reservoir rock

• Uniform properties allow consistent production / injection across the field.


Cushion Gas provides pressure support

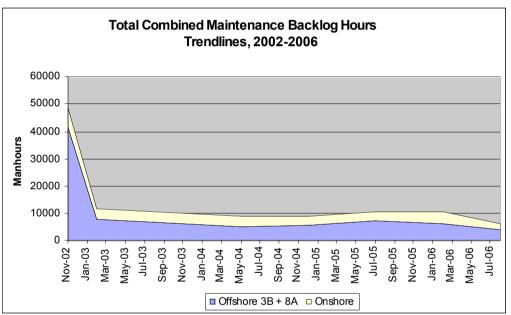
- Rough was converted from a partly depleted gas field, with the residual gas inside left as cushion gas to provide pressure support.
- To build another Rough requires right combination of reservoir characteristics and sufficient cushion gas in place.

How the reservoir is made up

Achievements since acquisition

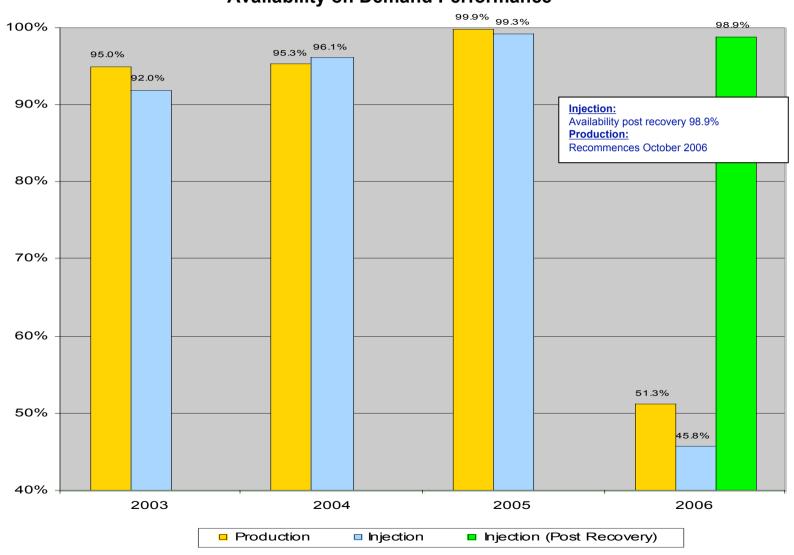
Immediate priorities:

- Cleared backlog (c37,000 man hours) of maintenance work from previous operators
- Lifted HSE deferred prohibition notice
- Restored manning and competence levels
- Undertakings agreed following Competition Commission investigation physical, legal and financial separation
- Focus on reducing and mitigating operational risk and improved safety performance
- Significant project expenditure to improve reliability, maintain integrity, and enhance performance - approx £50m spent to date (not including £30m recovery cost following Feb 2006 fire)
- Offshore Safety Case and onshore COMAH case
- Marketing strategy to enhance commercial value


...resulting in

- Operational reliability nearly 100% in 2005 (compared to
 - ~ 90% in 2000/1/2/3)
- Maximum deliverability rate increased by 8% enabling sale of additional peak product last winter
 - 8A 3B bypass
 - Improved sand monitoring and well control
 - Reperforation
- Excellent injection performance enabled record levels of additional space sales
- Proven reliability and marketing strategy led to approx 10% increase in SBU revenue relative to market between 2004/5 and 2006/7
- Full recovery for this winter from major explosion and fire in February 2006

Focused on reducing risk and management of health, safety and environmental issues...



....and operational availability

Availability on Demand Performance

P&L trend since acquisition

	FY 2003	FY 2004	FY 2005	H1 2006
Average SBU price (calendar year) (pence)	15.6	24.6	34.8	47.1
Turnover (£m)				
Standard SBUs	74	113	159	103
Extra space	3	8	19	13
Native gas sales	0	0	20	
Gas sales	30	21	30	25
Other	22	22	25	12
Total	129	164	253	154
External turnover (£m)	83	133	195	126
Cost of gas (£m)	36	33	35	28
Operating profit (£m)*	40	69	154	96

Rough SBU Price History

2000/01

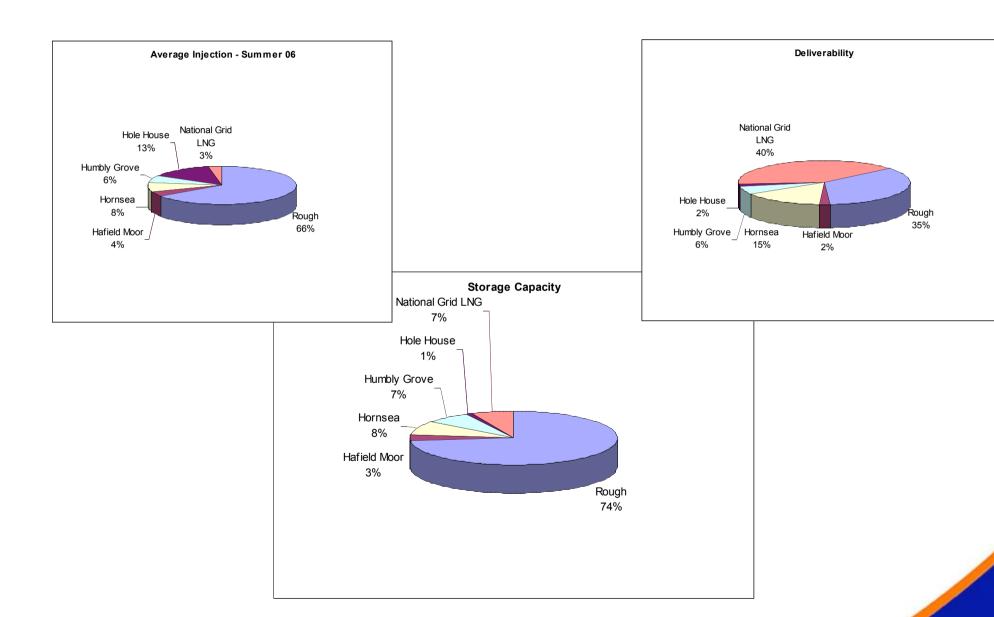
2001/02

2002/03

- 2003/04

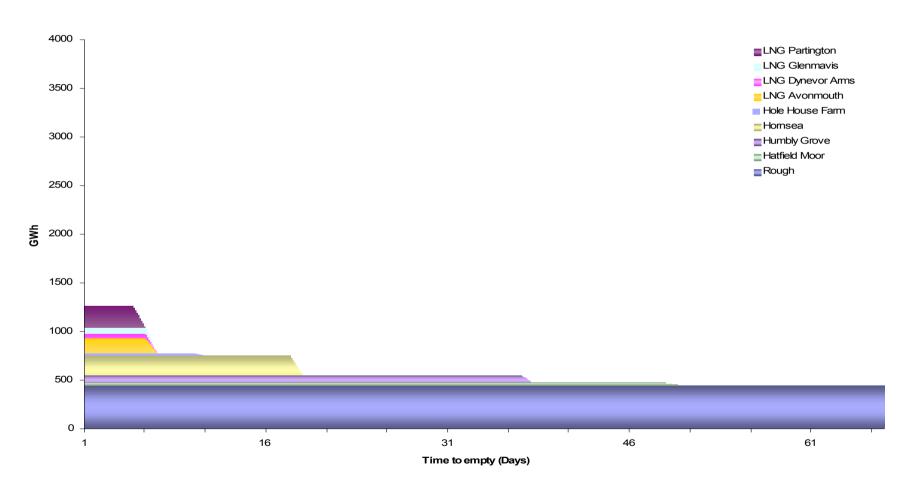

2004/05

2005/06

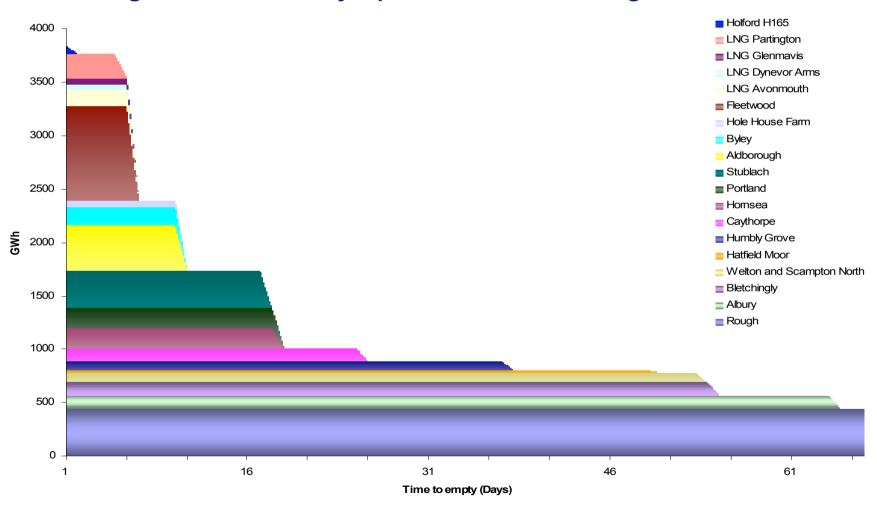

2006/07

2007/08

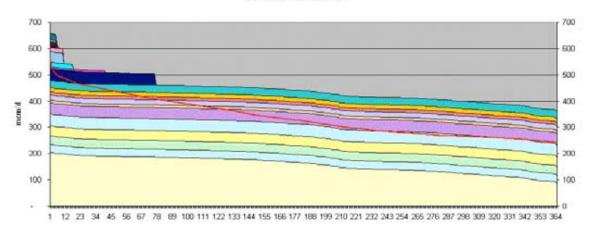
Rough SBU Price versus 2.55*(Q1-Summer) Spread


Rough's place in the storage and wider gas market

UK gas storage – current picture

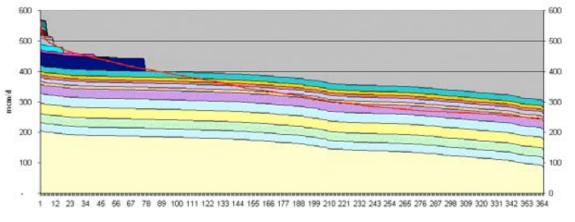

- still largely the old "British Gas" facilities
- Rough dominates seasonal storage market

UK gas storage - including all planned projects


- Assumes all current / planned projects built
- Rough remains the major part of seasonal storage

centrica storage

Impact of "gas surpluses" - winter 2007/08



Theoretical Maximum Case

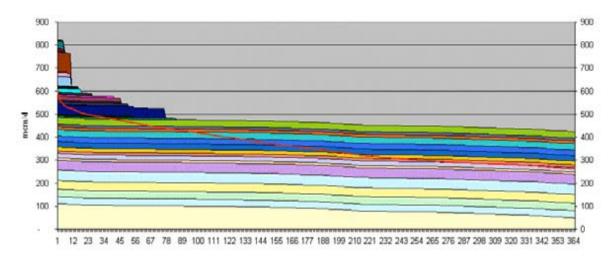
All planned infrastructure built on time and utilised 100%

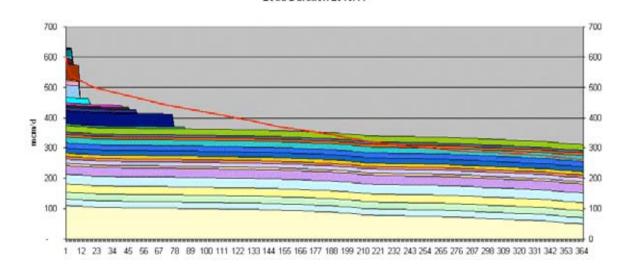
- Additional projects significantly boost supply potential
- · Winter appears amply supplied

Load Duration 2007/8

CSL mid case

Interconnectors, LNG terminals at 70% capacity, field gas at 90% of capacity, new storage at 50% capacity


- Tightness in cold winters, not necessarily at peak but after long duration of cold weather.
- Shows importance of Rough's position and advantageous shape
- Summer surpluses



....further ahead – winter 2010/11

Load Duration 2010/11

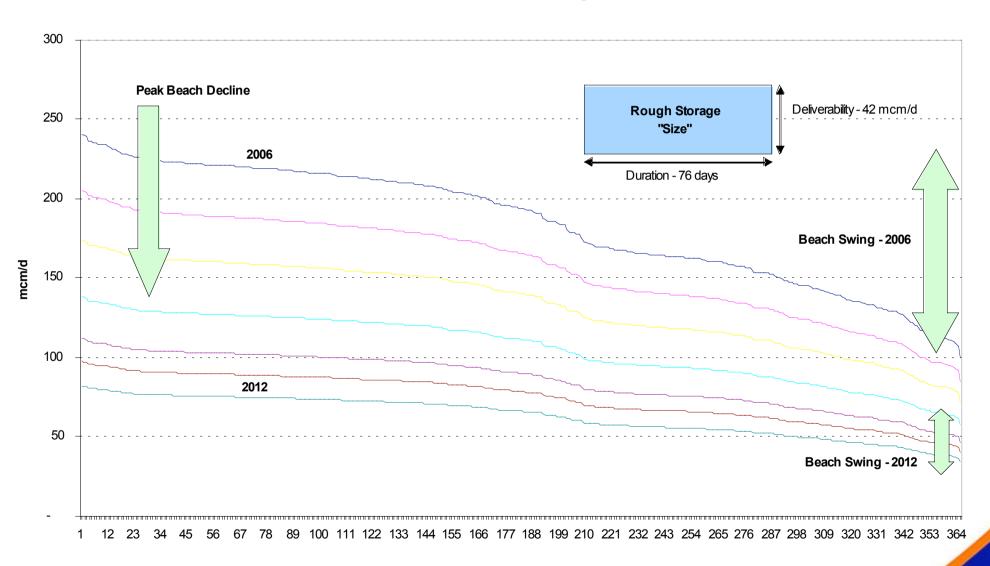
Load Duration 2010/11

Theoretical Maximum Case

All projects are implemented on time and utilised 100%

- Potential supply surpluses
- This is reflected in the forward curve with 2010/11 being the "dip" in the curve
- Too many short duration storage facilities
- Unlikely all projects will be completed due to planning consents, development challenges and incorrect mix of infrastructure

CSL Mid Case


LNG imports and interconnectors at 70% capacity, field gas at 90%, "conceptual" storage facilities excluded

- Supply gaps beginning to appear, again not necessarily at peak
- Summer surpluses
- Implies storage is a likely candidate for bundling of shapes

Expected UKCS decline

Beach Production decline - 2006 - 2012 vs Rough Production

Substitutes for long range storage (LRS)

Competition to storage may come from a variety of sources

Can European Storage compete against Rough?

- European public supply Obligations (PSO's) limit market access
- Access to transportation capacity problematic
- Major European markets need more storage by c 2010

Can CCGT switching compete against Rough?

- Requires spare capacity to exist on the power system
- Requires a favourable spark spread versus storage costs
- Last winter CCGTs did provide significant flexibility up to 40 mcm/day ... at a price

Can holding LNG capacity compete against Rough?

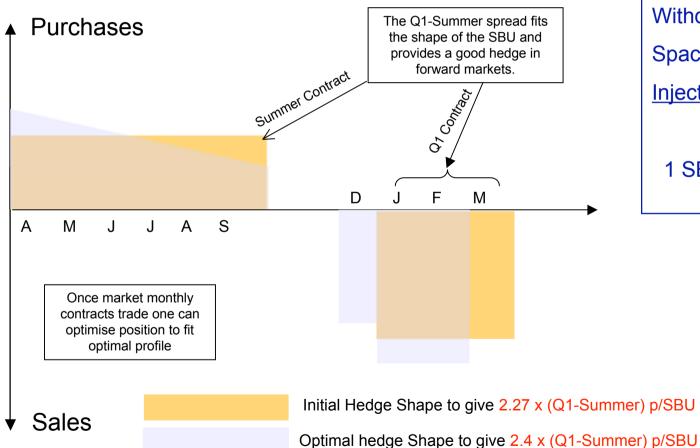
- Requires spare/idle capacity in LNG supply chain
- Limited storage at LNG sites so limited flexibility price takers
- Surplus regas capacity in US and Europe may allow LNG to compete in seasonal supply in short to medium term

Competitive advantages of long duration storage

- Physical proximity to market
- Large summer put optionality
- Short notice (2 hour) flexibility
- Cycling capability

Competitive Environment - Summary

- UKCS indigenous gas remains today the major competitor to Rough in supplying seasonal swing but is in steep decline
- Most new storage is relatively low volume and short duration and is not designed to compete directly with Rough
- Most (all?) new import infrastructure is designed to operate at high load factor
- Rough has strong competitive advantages over actual and potential competitors
 - physical proximity to market
 - large scale short notice rate flexibility
 - large scale put-optionality
 - low unit cost per stored volume



Value of storage

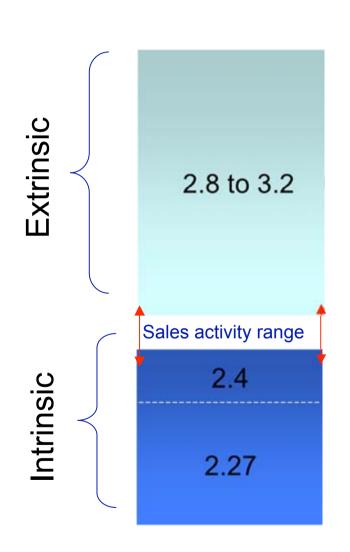
- Storage sold as "Standard Bundled Units" of injectability, space and deliverability
- Rough intrinsic value driven by price spreads in the forward market
- Volatility in spot and forward markets adds significant extrinsic value to holdings in Rough services
- Trend in recent years to greater use of Rough services by traders and trading affiliates of banks
- Also increasing interest from producers with "flat" supply sources which add value by shaping
- Some interest from major gas consumers and consumer groups to manage price risks

Rough – SBU pricing and intrinsic value

Standard Bundled Unit (SBU)

Withdrawal 1 kWh/day

Space 67 kWh


Injection 0.35 kWh/day

455m SBU's sold

1 SBU provides space equivalent to 2.27 therms

Unlocking the extrinsic value

Good Rough Reliability from high availability of the asset to CSL and customers

Customers able to reshape the CSL product or sell/buy unused capacity as firm or interruptible

Customers able to buy/sell gas in store

Ability to re-nominate withdrawal/injection with short lead times

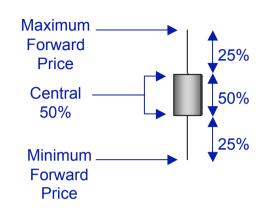
Customers nominated quantities equal their allocated quantities – irrespective of asset availability

Market volatility provides cycling ability to leverage greater value from a Rough SBU

Extrinsic value from use of Rough on 100+ days beyond intrinsic valuation

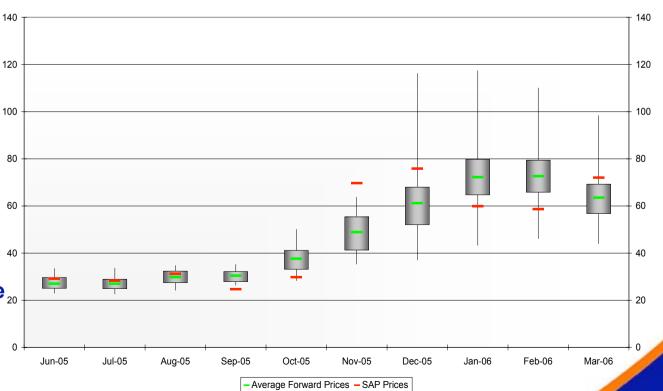
Potential upside to 2.4 intrinsic as Dec – Mar spread increases on Fundamental change to winter contract

Re-optimise hedge in more liquid market – further intrinsic value


Initial Intrinsic He<mark>dge in pr</mark>oduct-limited market fits shape of Rough

Poor Rough Reliability
Injection Cancellation
Long Injection Period
Force Majeure

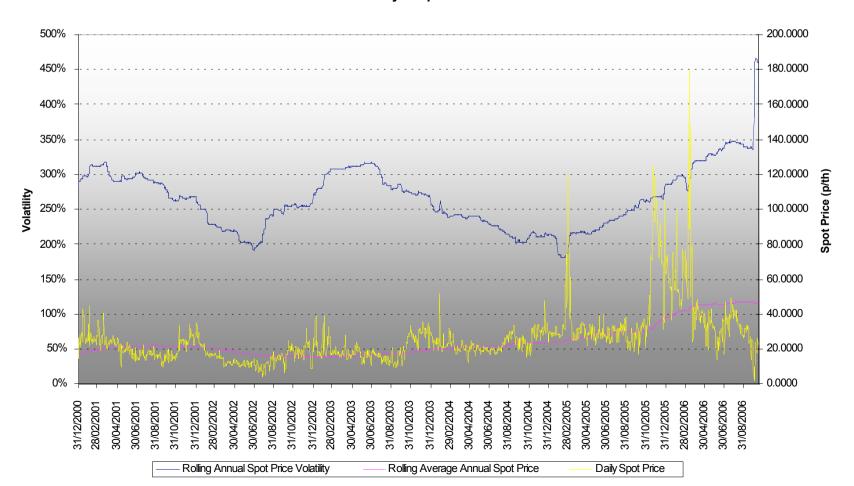
Forward Curve Price Spread 2005/6


- Different from and not a good predictor of spot/out-turn
- Rough valued using forward price spreads and volatility not absolute level of prices
- For Rough, low (or negative) prices in summer are as good as high winter prices

2005/6 Prices

(over 12 months preceding contract expiry)

- Rough storage is able to exploit arbitrage opportunities in differences between spot and forward markets
- During volatile and high priced periods, Rough can ⁶⁰ be used to minimise exposure <u>or</u> used as a trading tool to extract value₂₀



Volatility drives extrinsic storage value

- Low prices do not necessarily imply lower volatilities
- Already evidence of high-volatility with low prices
- Future risk of negative prices

Volatility vs Spot Prices

Market Value

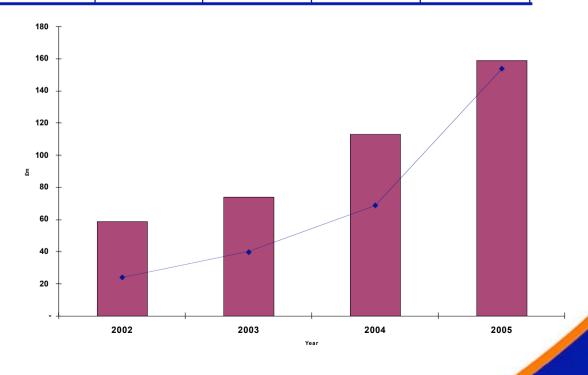
- No direct market comparator for Rough : Other storage facilities are less transparent
- Byley reportedly sold to Eon for £96m with a further £100m development cost required
 - Ongoing contractual terms are unknown
- Byley space is 6 bcf compare to Rough's 116 bcf
- Simplistically, this would place Rough's market value in excess of £3bn
 - However, with higher injectability and deliverability parameters than Rough, Byley is worth more on a pence/therm space basis

Financial drivers for Centrica Storage

- Revenue and profit trends
- Detailed financials
- Drivers of future SBU revenue

Revenue profit trends since acquisition

 SBU remains the main driver of profit, but other revenue and costs impact


2004

- higher revenue project expenditure on restoring facility
- higher gas costs and insurance costs

• <u>2005</u>

- "One off" peak product sale using native gas in 2005 generating £20m
- Improved injection performance enabling larger volumes of additional space sales, which also benefited from high market prices

£m	2002	2003	2004	2005
SBU revenue	59	74	113	159
Operating profit	24	40	69	154
Delta	35	34	44	5

Detailed financials

£m	2002	2003	2004	2005	2006 H1
SBU revenue	59	74	113	159	107
Processing Income Mainly Amethyst field limited remaining life		11	10	10	6
Incremental Bundled Units				20	1
Gas Sales & fuel gas		30	23	30	25
Commodity, Space "one off" income		11 3	11 7	13 19 2	2 13
Total Revenue	89	129	164	253	154
Cost of Sales		36	35	35	28
Gross Margin		93	128	218	126
Project Spend		2	5	7	3
Op costs		34	37	38	18
Depreciation		17	17	19	9
Op Profit	24	40	69	154	93

Drivers of future SBU revenue

- Summer/Q1 forward price spreads and volatility
 - current forward curve
 - risk premium in forward curve and forward price spread behaviour
 - impact of summer surpluses and put option value
- Multiplier of spread in SBU price increased from 2.3 to 2.5 between 2003/4 and 2005/06 – scope to increase further to at least 2.7
- Enhancement plans to increase deliverability, injectability and space could increase numbers of SBUs sold from 2009/10 by 5% plus
 - Enhancements to offshore compressors
 - Well A5 reinstatement
 - Further cushion gas sales to create space

Opportunities

- Now restore and enhance Rough's reliability and reputation and recover to 2005 levels
- 2008/09 2009/10 increase injection rates and further increase deliverability
- 2008/09 2010/11 Use increased injection and deliverability to make additional cushion gas sales, creating more space to sell
- 2009/10 2010/11 Increase number of SBUs (5+%)
- Diversify product offerings including more "virtual" products
- Diversify asset base through acquisition or development

Wrap Up

- Centrica Storage has demonstrated its operational and commercial skills in storage through significant challenges
- Rough is in a strong competitive position to meet growing market need for long duration seasonal storage
- Uncertainties remain about the gas supply/demand position, particularly in periods of prolonged high demand
- Rough's capacity sales are advantaged through risk-premia present in forward seasonal markets during uncertain periods of supply/demand
- The value of Rough's large put-optionality in periods of over-supply not fully recognised
- There remain opportunities to enhance capacity and to increase price relative to market
- Acquisition or development of other storage assets will enhance the value of Centrica Storage's portfolio through risk diversification and improved product offering to market